Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer **all** questions. Answers must be written within the answer boxes provided. Working may be continued below the lines, if necessary.

1. [Maximum mark:	5]
--------------------------	----

Let A and B be events such that P(A) = 0.5, P(B) = 0.4 and $P(A \cup B) = 0.6$. Find $P(A \mid B)$.

ı	

[Maximum mark: 5] 2.

(2)	Show that ($(2n - 1)^2$	$(2n + 1)^{4}$	$2-9n^2+2$	where $n \in \mathbb{Z}$.	
(a)	SHOW HIAL ($\angle n - 1$) \pm	$(\Delta n + 1)$	$-\circ n+2$	WIICIC $n \in \mathbb{Z}$.	

[2]

(b) Hence, or otherwise, prove that the sum of the squares of any two consecutive odd integers is even.

[3]

3. [Maximum mark: 5]

Let $f'(x) = \frac{8x}{\sqrt{2x^2 + 1}}$. Given that f(0) = 5, find f(x).

4. [Maximum mark: 5]

The following diagram shows the graph of y = f(x). The graph has a horizontal asymptote at y = -1. The graph crosses the x-axis at x = -1 and x = 1, and the y-axis at y = 2.

On the following set of axes, sketch the graph of $y = [f(x)]^2 + 1$, clearly showing any asymptotes with their equations and the coordinates of any local maxima or minima.

Turn over

5. [Maximum mark: 5]

The functions f and g are defined such that $f(x) = \frac{x+3}{4}$ and g(x) = 8x + 5.

(a) Show that $(g \circ f)(x) = 2x + 11$.

[2]

(b) Given that $(g \circ f)^{-1}(a) = 4$, find the value of a.

[3]

[Maximum mark: 8] 6.

(a)	Show that $\log_{9}(\cos 2x + 2) = \log_{3} \sqrt{\cos 2x + 2}$.	[3]
(/	- · · · · · · · · · · · · · · · · · · ·	[-]

(b) Hence or otherwise solve $\log_3(2\sin x) = \log_9(\cos 2x + 2)$ for $0 < x < \frac{\pi}{2}$. [5]

٠.	٠	 ٠	 	٠	 •	•	 ٠	•	 •	•	٠.	 ٠	٠	•	 	٠	•	•		 	•	٠	•	 	•	•		٠	•		•	٠	-	 •	٠		٠	•	•		٠
			 		 -		 -								 					 				 																	
			 		 -										 					 				 																	
			 												 					 			•	 																	

7. [Maximum mark: 7]

A continuous random variable \boldsymbol{X} has the probability density function f given by

$$f(x) = \begin{cases} \frac{\pi x}{36} \sin\left(\frac{\pi x}{6}\right), & 0 \le x \le 6\\ 0, & \text{otherwise} \end{cases}$$

-8-

Find $P(0 \le X \le 3)$.

The plane Π has the Cartesian equation 2x + y + 2z = 3.

The line L has the vector equation $\mathbf{r} = \begin{pmatrix} 3 \\ -5 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -2 \\ p \end{pmatrix}, \ \mu, p \in \mathbb{R}$. The acute angle between the line L and the plane Π is 30° .

Find the possible values of p.

[3]

9. [Maximum mark: 8]

The function f is defined by $f(x) = e^{2x} - 6e^x + 5$, $x \in \mathbb{R}$, $x \le a$. The graph of y = f(x) is shown in the following diagram.

- (a) Find the largest value of a such that f has an inverse function.
- (b) For this value of a, find an expression for $f^{-1}(x)$, stating its domain. [5]

(This question continues on the following page)

(Question 9 continued)

[7]

Do not write solutions on this page.

Section B

Answer all questions in the answer booklet provided. Please start each question on a new page.

10. [Maximum mark: 16]

Let $f(x) = \frac{\ln 5x}{kx}$ where x > 0, $k \in \mathbb{R}^+$.

(a) Show that
$$f'(x) = \frac{1 - \ln 5x}{kx^2}$$
. [3]

The graph of f has exactly one maximum point P.

The second derivative of f is given by $f''(x) = \frac{2 \ln 5x - 3}{kx^3}$. The graph of f has exactly one point of inflexion Q.

(c) Show that the *x*-coordinate of Q is
$$\frac{1}{5}e^{\frac{3}{2}}$$
. [3]

The region R is enclosed by the graph of f, the x-axis, and the vertical lines through the maximum point P and the point of inflexion Q.

(d) Given that the area of R is 3, find the value of k.

[4]

Do **not** write solutions on this page.

11. [Maximum mark: 18]

(a) Express $-3 + \sqrt{3}i$ in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$. [5]

Let the roots of the equation $z^3 = -3 + \sqrt{3}i$ be u, v and w.

(b) Find u, v and w expressing your answers in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$. [5]

On an Argand diagram, u, v and w are represented by the points U, V and W respectively.

- (c) Find the area of triangle UVW.
- (d) By considering the sum of the roots u, v and w, show that $\cos \frac{5\pi}{18} + \cos \frac{7\pi}{18} + \cos \frac{17\pi}{18} = 0.$ [4]

12. [Maximum mark: 21]

The function f is defined by $f(x) = e^{\sin x}$.

- (a) Find the first two derivatives of f(x) and hence find the Maclaurin series for f(x) up to and including the x^2 term. [8]
- (b) Show that the coefficient of x^3 in the Maclaurin series for f(x) is zero. [4]
- (c) Using the Maclaurin series for $\arctan x$ and $e^{3x} 1$, find the Maclaurin series for $\arctan(e^{3x} 1)$ up to and including the x^3 term. [6]
- (d) Hence, or otherwise, find $\lim_{x\to 0} \frac{f(x)-1}{\arctan\left(e^{3x}-1\right)}$. [3]

